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NONTECHNICAL SUMMARY 

A Markovlan Decision Process la a process which is observed at 

distinct time points to be in some state. After observing the state 

of the system an action is chosen - corresponding to the action (and 

the present state) a cost is incurred and the transition probabilities 

for the next state are determined.  A policy is any rule for choosing 

actions. Corresponding to each policy there is an expected long run 

average cost per unit time. This paper is concerned with finding 

an optimal policy - i.e. one whose associated average cost is minimal. 

For example we might have a tool which wears out with time. 

The state of the system could be the length of the tool, and the 

possible actions could be either to replace the tool or not  Associated 

with each state there would be an operating cost.  Thus a policy is a 

rule for determining when to replace the tool and an optimal one is 

one which minimizes the long run average cost. 

In the past most of the work in this area has been done under the 

assumption that the state space is countable.  In this paper we let 

the state space be arbitrary.  For example, in ehe tool problem given 

above it is natural to let the state space be the continuum of possible 

values of the length of the tool 

This paper presents sufficient conditions for the existence of an 

optimal policy and for it to be of simple type  This type - called 

stationary deterministic - Is or the rorm of a tunction mapping the 

state space Into the action space  For example, in the Cool problem 
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a stationary deterministic policy would replace whenever the length 

of the tool Is In some specified set of real numbers.    The method 

employed Is to treat the average cost problem as a limit of either 

the discounted cost problem or the nondlscounted n-stage problem. 

We also show how, In a special case,  the average cost problem may 

be reduced to a discounted cost probleni. 
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ARBITRARY STATE MARKOVIAN DECISION PROCESSES 

Sheldon M. Ross 

1.  Introduction 

We are concerned with a process which Is observed at times 

t ■ 0,1,2,... and classified into one of a possible number of states. 

We let * denote the state space of the process. %  is assumed to be 

a Borel subset of a complete separable metric space, and we let 'Sk be 

the a-algebra of Borel subsets of %.      After each classification an 

action must be chosen and we let A, assumed finite, denote the set 

of all possible actions. 

Let (X ; t - 0,1,2,...} and (A ; t - 0,1,2,...}  denote the 

sequence of states and actions; and let S , - (XQ,A , ...X  ,A  ). 

It is assumed that for every xex, keA there is a known probability 

measure P(.|x,k) on^such that, for some version, 

P{Xt+1eB|Xt - x, At - k, S ^ - P(Bix,k) for every Beg, and all 

histories S .. It is also assumed that for every keA, Befi,. P(B|*,k) 

is a Hair« function on %, 

Whenever the process is in state x and action k is chosen then 

a bounded (expected) cost C(x,k) - assumed, for fixed k, to be a Baire 

function in x- is incurred. 

A policy R is a set of Baire functions ^.(S i,x)). . satisfying 

DjJS i.x) >. 0 for all keA, and  I D, (S „x) - 1 for every (S  .,x). 
keA 

The interpretation being:    if at time  t  the history S    ,  has been 

observed and X    - x then action k is  chosen with probability D. (S     , ,x) 

R is said  to be stationary if Dt-CSt.-i.3^  " \i*)  ior every S    .',   R is 

said to be stationary deterministic if D. (x)  equals 0 or 1 for all x,k. 
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For any policy R, let (|>(x,R) - 11m sup 1/n I ER [C(Xt,At) |xo-X]. 

n -► oo t-0 

Thus (t)(xtR) is the expected average cost per unit time when the process 

starts in state x and policy R is used. 

In [A]   , under the assumption that x is denumerable, a number of 

results dealing with the average cost criterion were proven.    The method 

employed was to treat the average cost problem as a limit (as the discount 

factor approaches unity)  of the discounted cost problem.    In this paper 

we generalize some of these results to arbitrary state spaces.    We also 

show how to treat the average cost problem as a limit of the n-stage 

problem.    One of the advantages of this approach Is that it enables us 

to determine, for denumerable %, a necessary and sufficient condition 

for the existence of a bounded solution to a functional equation which 

characterizes the optimal policy. 

2.       Stationary Deterministic Optimal Policies 

The following theorem was originally proven by Derman [2]  for the 

special case that x is denumerable.    The following proof is newi    it 

makes use of a technique used by Taylor  [5]. 

Theorem 1;      If there exists a bounded Baire function f(x), xex and a 

constant g, such that 

(1) g + f(x) - min {C(x,k) +    /    f(y)     dP(y|x,k)}      xex 
keA yex 

then there exists a stationary deterministic policy R* such that 

g • ())(x,R*)  - min <|i(x,R)  for all xcx 
R 
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and R* Is any policy which, for each x, prescribes an action which 

minimizes the right side of  (1). 

Proof;    For any policy R 

n 
ER {  E   [f(Xt) - ER(f(Xt)|St_1)]}    -    0 

But 

ye* 

c(xt_i,At-i) +  /   f(y)dp(ylxt_i'At-i) " c(xt-i'At-i) 

yex 

> mln {C(Xt_1,k)  +    /    f(y)dP(y|Xt_1,k)}    ' Cft^L^) 
keA " " ye* 

> g + £(Xt_1) - CCX^,/-^) 

with equality for R* since R* Is defined to take the minimizing action. 

Hence 
n 

0 < ER{  E  If(Xt) - g - f (X^^ + CCX^.A^)]} 

f(xn) f(x0) ^1 ^Vl'^t-^ 
(2)     *ih-ir -h-t- +\ n  

with equality for R*.    Letting n      " and using the fact  that f  Is 

bounded,  we have that g _<    (J)(R,X0) with equality for R*,   and for all 

possible values of X...      QED. 

Remark:       Note that the above proof doesn't make use of  the fact that 

A Is finite or that C(x,k)  is bounded. 
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j (3)     g^x)    - mln C(x,k) 

Let gn(x), n - 1,2,... satisfy 

gn+1(x) - mln {C(x,k) + / gn(y)dP(y|x,k)} 
k yex 

n-1 
Note that g (x) - mln I    E-ICCX^A.) |xn - x].  The following corollary 

n       R t-0 R   t '  0 

was proven by Derman [2] for the denumerable case. 

Corollary Is Under the conditions of theorem 1, there Is a M 

such that 

|g (x) - ng| < M for all n,x 

Proofs Let M be such that |f(x)| < M .  By (2) we have that 
i 

g £ 2M + g (x). Again from (2), by letting R • R* we have that 

g i gn(x) - 2M .   QED. 

Fix some state - call It C - and let 

(4) fn(x) - gn(x) - gn(0) all n,x 

One has from (3)  that 

(5) 8n+1<0)  " 8n(0) + fn(x) - mln {C(x,k) +   /    fn(y)dP(y |x,k)} 
k yex 

We shall now determine sufficient  (and in the denumerable case 

necessary and sufficient)  conditions for the existence of a bounded 

Haire function f(x)  and a constant g satisfying (1). 

Theorem 2s      If  {f  }    is a    uniformly bounded equicontlnuous family of 

functions then 

(1)      there exists a bounded continuous function f (x) and a constant 

g satisfying  (1). 

I 
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(il)     lim    (gn+1(x) - gn(x)) - g for all xtx- 

Proof; By the Ascoll Theorem there exists a subsequence    {f    } 

and a continuous function f such that f    (x) -* f(x).    Now g  ,,(0)  - g (0) n. nri n 

is bounded (since costs are bounded) and so we can also require that 

g    .1(0) - g    (0) -*■ g.    Hence by  (5) and the bounded convergence theorem 
"k "k 

we have that g + f(x) - min    {C(x,k) +    /    f (y)dP(y| x,k)} 
yex 

For any subsequence (n } of (nl  there is a sub-subsequence in } 

such that lim(g 1,,, (0) - g „(0))exists. By the above this limit must 

be g.  Thus g - lim (g ^.(0) - g (0)). The result follows since 0 is »      a "n+l     n 
n 

any arbitrary state.    QED. 

If * is denumerable, then if ) can always be taken to be equicontinuous 

by considering the discrete topology. We thus have 

Corollary 2s  If %  is denumerable, then a necessary and sufficient condition 

for the existence of a bounded function f(x) and constant g satisfying (1) 

is that there is a M < » such that |g (x) - g (0) | < M for all n,x. 
n    ** 

Prooft  Sufficiency follows from the ^bove theorem and necessity follows 

from Corollary 1.  QED. 
00 

For any policy R, 6e(0,l), let *(x,B,R) - l    ßtE_[C(X .^J|Xn ■ x]- 
t-0   R   t t  ü 

A policy R0 such that iKx,S,R0) ■ min ^(x.ß.R) for all xex is said to be 
ß ß    R 

ß-optimal. 

We shall need the following result given by Blackwell [l]s 

If A is finite, and €(■,•) is bounded then, for each ße(0,l), there Is 

a stationary deterministic policy R which is ß-optlmal.  Furthermore 

(Kx,ß,Rg) is the unique solution to 
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(6)   iKx.ß.RJ - min {C(x,k) + ß / ^(y,ß,Rfl)dP(y|x,k)} 
keA ytx 

and any policy which, when In state x, selects an action which minimizes 

the right side of (6) is ß-optimal. 

Fix some state - call it 0 - and let 

(7) fß(x) - ^(x,ß,Rß) - KO.ß.Rg) 

then 

(8) gfl + fn(x)  - min {C(x,k) + ß / f. (,y)dP(y |x,k)} 
86     k        yex ß 

where 

gg -  (1-ß) ip (O,ßtR0) 

In analagous fashion to Theorem 2 we have 

Theorem 3s  If {fQ} is a uniformly bounded equicontinuous family of 

functions then 

(I) there exists a bounded continuous function f(x) and a constant 

g satisfying (1). 

(II) (l-ß)Vg(x) ^ g as ß -^ 1" for all xex- 

Proof;   Same as proof of Theorem 2, 

For any stationary deterministic policy R let x(R) be the action 

.. chooses when In state x. We say that lim R ■ R if, for each x, ^      n   n       ' ' 

there exists N  < » such that x(R ) * x(R) for all n > N x n — x 

The following was proven in [4] for denumerable %.    The proof 

for arbitrary * is identical 
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I Theorem 4;  Under the conditions of Theorem 3 

(I) for some sequence ß ♦ 1 , R* - 11m RQ r D 
r    r 

(II) If R - 11m R0 , where ß  ■>■ 1~ then R Is optimal - I.e. 
r  ßr       r 

(j)(x,R) - g for all xtx- 

The following two conditions were given by Taylor [5]  to prove 

equicontinuity of (£„} in the special case of a replacement processi 

(a) For every ke.A, C(>,k) is continuous. 

(b) For every xex, keA, P(|x,k) Is absolutely continuous with respect 

to some o-flnlte measure u on B and it possesses a density p(y|x,k) 

also assumed to be a Baire function In x. Furthermore, for every 

xe*, keA 

11m / |p(y|x,k) - ptylx'.^ld^Cy) - 0 
x'+x 

Theorem 5:  If conditions (a) and (b) are satisfied then 

(i)  |fß(x)| < M for all x,ß -  {fß}  is equicontinuous 

(11) |f (x)| < M for all x,n ■> (f ) is equicontinuous 

Proof!  Follows directly from (5) and (8) and conditions (a), (b). 

A sufficient condition for the uniform boundedness of {ir!  is 
ß 

given in [4]n 

3.  Reduction of Average Cost Case to Discounted Cost Case 

We shall need the following assumption 

Assumption (I)i  There is a state - call it 0 - and a - 0, su;h that 

P{Xt+l " 0lxt ■ x» A
t ■ k> _ a for a11 Xk-x, kcA. 



For any process satisfying the above Assumption consider a new 

process with Identical state and action spaces, with Identical costs, 

but with transition probabilities now given by 

P'CBkk)    =   < 

P<Blx'k? for OiB 
1 - a 

P^B'X^ - a for OeB 
1 -    a 

BeB 

Let \l>  (x,6,R) be the total expected ß-dlscounted cost, and let 
i 

R. be the ß-optlmal policy, all with respect to the new process. 
ii      ii       i 

Letting f (x) - ^ (x.l-oi^, ) - * (0,l-o,R.  ) we have by (8) that 

i    i 

(9)  aij; (0,1-QI,R) + f (x) - mln {C(x,k) + (1-a) / f (y)dP (y|x,k)} 
k ytx 

- mln {C(x,k) + / f (y)dP(y|x,k)} 
k yex 

And thus the conditions of Theorem 1 are satisfied. It follows that 
•       i 

g ■ onj* (0,l-a,R..  ) and the optimal average-cost policy is the one 

which selects the actions which minimize the right side of (9). But 
i 

it is easily seen that R,  does exactly this. Hence the optimal 

average cost policy is precisely the 1-a-optimal policy with respect 

to the new process;  and the optimal expected average cost per unit 
i       i 

time is aty  (O.l-ot.R,  ). 

The above result was proven in  [A]   for the denumerable case by 
i 

showing that (t>(x,R)  - a^  (0,l-a,R)  for any stationary policy R. 

MBBM^^H ■HMMÜ 



This result also holds for arbitrary x> However this In Itself 

i 

does not show that R,  Is optimal.  (It does In the denumerable 
1-a    r 

case because It can be shown that Assumption (I) implies chat if } 

Is uniformly bounded and thus by Theorem 3 there exists a 

stationary deterministic policy which is optimal.) 

A.  Concluding Remarks 

Results given In [A] which dealt with e-optimal policies and 

replacement processes (Sections 3 and 4) carry over to the more general 

spaces x considered here  The proofs are Identical (with integrals 

replacing sums in the obvious places). 

- -■-■ «■■■■HM 
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